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Au salts have been shown as exceptional catdlystactivate Scheme 1. Proposed Au(l)-Catalyzed Formation of
alkynes? alkenes, and allenes toward nucleophilic attacks. A~ 2-Cyclopentenones
variety of structural motifs have been efficiently accessed under p—— Oji s 1 . B3
exceedingly mild reaction conditions. § bRteoc )\R RO J N | R
Cyclopentenones are key intermediates in organic synthesis. e BN e ¢ : f“1
Among a variety of approaches for their preparation, the Nazarov ; RRHIW R R;‘=md°|>3_ylmemyl
reactior} is arguably one of the most versatile and efficient methods. i 5 / Jlﬂﬂgvcloaddmn
However, most synthetically viable applications of the Nazarov o Nazarov reacion; oore o
reaction have to include structural elements to control the double ﬁ(*‘g . hydrolysis Aus R [ L R1
bond position in the enone prodddturthermore, the divinyl ketone R R R ' s ' Rt N \R

starting materials or equivalents are commonly prepared conver-
gently from substrates containing a double bond or its surrogate, Table 1. Screen of Reaction Conditions for Cyclopentenone
which limits the substrate scope and hence the utility of this reaction. Formation

o

Herein, we report a Au(l)-(_:atalyz_ed highly efficient synthe5|s O)OLMe o e D e
of cyclopentenones from readily available enynyl esters via tandem Moy N i ﬁMe e ﬁﬁ
3,3-rearrangement and the Nazarov reaction. In this reaction, AuCl- ﬁ{\(“"e Me gy 4
(PPh)/AgSbFR; plays dual roles of activating both alkynes and ’ ’
allenes. Moreover, this reaction allows significant substrate flex- Time Cony. _Yield (%)°
ibility and has excellent control of the cyclopentenone double bond EY Catalyst Conditions 0 ) 2 3
DA maTn 28 T 4

Previously, | reported that cationic Au(I). complexes can not o_nly 3 50/‘; AUCH 3)/Ag dry CHZ%ZIZ,Z’rt 05 48 31 <1
catalyze 3,3-rearrangement of propargylic esters but also activate 4 59 AuCk wetCHClp, it 05 96 5 64
the resulting allenylic esters in situ for subsequent[2] cycliza- g ggﬁn Ztcskblg Svrgttgltlb%}e,r?oc 85 <411 <312 ii
tion via oxonium intermediaté (Scheme 1J.We envisage that 7 50/‘; ngOH dry CI—&CIZn 05 63 <1 <1

when R is an alkenyl groupA becomes pentadienylic catid
which could undergo the Nazarov reaction and lead to cyclopen-  aEstimated by!H NMR using diethyl phthalate as internal standard.
tenones. Since enynyl alcohols can be prepared in a modular mannef Isolated yield° Due to adventitious watef.Decomposed amount.
either from aldehyde/enyne or from aldehyde/acetylene/alkenyl

halide, this could constitute either a fit 4] or a [1 + 2 + 2] propargylic position. While the parent vinyl derivatiBereacted

approach toward versatile 2-cyclopentenone derivatives with high readily to give 3-pentyl-2-cyclopenten-1-or# n good yield (entry

efficiency and flexibility. 3), various substituents on the-€ double bond were allowed.
We began by treating enynyl acetdtevith 1 mol % of AuCl- For example, treatment of enynyl acetates containing cyclopentene

(PPh)/AgSbF; in anhydrous ChCl,. 1 was completely consumed  (entry 4), cyclohexene (entry 5), and cycloheptene (entry 6) moieties
in 0.5 h, and gratifyingly, the desired cyclopenten@neas formed with 1 mol % of AuCI(PPE)/AgSbFs led to bicyclic cyclopenten-

in 8% vyield along with unhydrolyzed cyclopentadienylic acetate ones in fairly good to excellent yields. The relatively low yield of
28 (65% yield; Table 1, entry 1). When wet GEl,° was used as cis-5,5-fused enoné1 was likely due to ring strain. In addition,
reaction solvent, the yield &was increased dramatically to 92%, phenyl substitution at the double bond (entry 7) was tolerated,
while a small amount o2 was observed byH NMR during most although a higher catalyst loading (5 mol %) was necessary,
of the reaction period (Table 1, entry 2). No double bond isomer cyclopentenoné&?7 was isolated in 74% yield. Surprisingly, partial
of 3 was observed. It is noteworthy that C-3 of cyclopenten®ne  desilylation occurred during the cyclization of TIPS-protected
was derived from the carbonyl group of hexanal, and the other acetatel8. As a result, hydroxyl enon&9 was isolated in 81%
ring carbons were from the enyne moiety of 2-methylbut-1-en-3- Yyield after treating the resulting reaction mixture with TFA. Less
yne. The effectiveness of AuCI(PRIgSbR; was evident, as other  clean reactions were observed when the hydroxyl group was

catalysts were either less efficient (e.g., Ag@hd PtC}; Table 1, protected by either a TBS or a THP group.
entries 3-5) or incompetent (e.g., AgSkbfand TfOH; Table 1, Remarkably, treatment of enynyl aceta®® derived from
entries 6 and 7). benzaldehyde with AuCI(PR{AQSbFs (5 mol %) resulted in the

With these results in hand, we set out to examine the scope of formation of cyclopentadienylic aceta?d in 91% yield even in
this reaction. As shown in Table 2, enynyl acetates derived from wet CHCl, (eq 1). Hydrolysis o1 in the presence of HNEf(1
o-branched aldehydes (i.e., compouddmd6) underwent smooth mol %) gave enon@2in excellent yield. Similarly, aceta@3 with
reaction, and the corresponding cyclopentenones were isolated ina p-CFs-substituted phenyl group underwent smooth cyclization,
excellent yields (entries 1 and 2), indicating steric tolerance at the and enone24 was isolated in 96% overall yield after hydrolysis.
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Table 2. AuCI(PPhs)/AgSbFe-Catalyzed Formation of

Cyclopentenones?
OAc o
AUCI(PPh3)/AgShFg R
RN w
R wet CH,Cly, 1t
| R R?
RZ
l Enynyl Catalyst Time Yield®
Entry acetate (mol %) (h) Cyclopentenone (%)
onc Q
Me
O)\’rm 0.5 95
5
o
. OAc Me
2 Me}:\wm | 0.5 Me. 88
6 Me' Ve 7
OAc Q
3 N 0 9
AR 1 .5 Ve 7
| 8 4 9
OAc
Me. OH
4 4 X 1 0.5 57
10 Ve I~
e OAc o,
5 A 1 0.5 wﬁb 84
Me.
12 7 b 13
OAc o
Me. S H
6 TN 1 0.5 m 90°
Me.
14 A 15
OAc o
7 "N S 2 P74
16 ey 17
OAc [e)
Me.
8 ﬁ\‘/\/OTIPS 5 0.5 \Oﬁ/\/OH 81¢
18 Me~g; 19

aSubstrate concentrations are 0.05 Msolated yields¢ Containing
about 6% of therans5,7-fused enone and 6% of an isomer with theC
double bond at ring juncturé.See text.

Scheme 2. Proposed Mechanism for the Formation of
Cyclopentenones
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However, a complex reaction mixture resulted when the phenyl

group was substituted with @methoxy group.
OAc Me Me

R

R= H, 20 R— H 22; yield: 90%

CF3, 23

R=H, 21, yield: 91% CF3, 24; overall yield: 96%

The mechanism of this remarkable reaction is hypothesized in
Scheme 2. Pentadienylic cati@nis generated via cationic Au(l)-
catalyzed tandem 3,3-rearrangement of enynyl ac€tated activa-
tion of the in situ generated allenylic acetate. Subsequent electro-
cyclic ring closure oD forms Au-containing cyclopentenylic cation
E, which should be in resonance with Au carbenoid speEies
While cyclopentadienylic acetatd can be formed fronk/F via
either regioselective 1,2-hydride shift followed by the collapse of
cationG or E1-type elimination assisted by,8 and protonation
of alkenylgold intermediaté, interestingly, both pathways seem
operative as partial deuterium incorporation at the cyclopentenone
2 position of3 was observed when GBI, saturated with BO
was used® Remarkably, Au(l) seems to assist highly selective for-
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AuCI(PPhg)/AgSbFg
(5 mol %), wet CH,CI,

HNTf, (1 mol %)
t, overmght

wet CH,Cly 1t 4h

mation ofH in both pathways. It is striking that catiofs E, and

G do not undergo hydrolysis to any significant extent, presumably
due to rapid ensuing transformations. When RHns an alkyl
group, hydrolysis of the enol acetate moiety occurs, and cyclopen-
tenonel is formed as final product. The catalyst for hydrolysis of
H is proposed to be ¥D*SbR~, instead of [Au(PP¥]*Sbk™,
based on the following observations: (1) AuCI(RPAgSbF; (up

to 5 mol %) hydrolyze® in wet CD,Cl, very slowly; (2) AuCl-
(PPh)/AgSbFs (1 mol %) hydrolyzed2 quickly (in less than 30
min) when2 was mixed with 1 equiv of enynyl acetate(3) when

a mixture of 1 and 2 was treated with the Au(l) catalyst, the
consumption ofl could be stopped halfway by the addition of
BnSMe!! while 2 was continuously hydrolyzed; (4) HOAc did not
efficiently promote the hydrolysis; howeve?, was completely
converted into enond in 10 min with 1 mol % of HNT$.
Presumably a small amount ok&*"SbR~ was generated during
the reaction of [Au(PPf)]*SbR~ with 1. In the cases of aryl
compound20 and 23, either BO*SbR~ was not generated or it
was consumed via the formation of a stable benzylic-type cation.

In conclusion, we have developed a highly efficient method for
the synthesis of versatile cyclopentenones from enynyl acetates via
tandem Au(l)-catalyzed 3,3-rearrangement and the Nazarov reaction.
Significant substrate flexibility and excellent control of the double
bond position in the cyclopentenone ring render this an attractive
method for cyclopentenone synthesis.
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